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ABSTRACT
Air traffic automation depends on accurate trajectory
predictions. Flight tests show that wind errors are a
large source of error. Wind field accuracy is sufficient
on average, but large errors occasionally exist that
cause significant errors in trajectory prediction. A year-
long study was conducted to better understand wind
prediction errors, to establish metrics for quantifying
large errors and to validate two approaches to improve
wind prediction accuracy.

Three methods are discussed for quantifying large
errors: percentage of point errors that exceed 10 m/s,
probability distribution of point errors, and the number
of hourly time periods with a large fraction of errors
above a threshold.

The baseline wind prediction system evaluated for this
study is the Rapid Update Cycle (RUC). Two
approaches to improving the original RUC wind
predictions are examined. The first approach is to
enhance RUC in terms of increased model resolution,
improved model physics, and increased observations.
The second method is to augment the RUC output, in
near real time, through an optimal interpolation scheme
that incorporates the aircraft reports received since the
last RUC run. Both approaches are shown to greatly
reduce the occurrence of large wind errors.

1. SUMMARY
Air Traffic Management (ATM) Decision Support
Tools (DST) require accurate trajectory predictions to
provide controllers with operationally acceptable
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advisories. Flight tests have shown that wind prediction
errors are the largest source of trajectory prediction
error. Although on-average wind prediction accuracy
may be sufficient, these flight tests revealed that large
errors occasionally exist over large enough regions of
airspace and time to cause significant errors in
trajectory predictions. Such errors, even if they occur
only infrequently, significantly diminish the operational
acceptance of ATM DST advisories. A year-long study
of the Denver Air Route Traffic Control Center
(ARTCC) airspace was conducted to better understand
the magnitude and source of wind prediction errors, to
establish metrics for quantifying large errors that may
be critical to ATM decision support, and to validate two
approaches to reducing the occurrence of these large
errors.

Three methods are discussed for measuring large errors,
given spot checks of wind accuracy from comparisons
to aircraft measured winds at a set of points. The first,
large point error percentage, indicates the percentage of
point wind vector errors that exceed 10 m/s. The value
10  m/s is taken as a threshold at which wind errors
become problematic for an ATM DST. The second,
error probability distribution, looks at the distribution of
point wind vector errors. This metric offers greater
flexibility in that no a priori threshold is applied. The
third method, large hourly error, determines the number
of hourly time periods within which a certain
percentage of point errors exceed a threshold; for
example 10 m/s. The advantage of this metric is its
applicability to determining the frequency of periods
within which ATM DSTs may be negatively impacted
by groups of large point errors since a single point error
does not lead to poor trajectory accuracy.

The baseline wind prediction system evaluated for this
study was the Rapid Update Cycle (RUC). Two
approaches to improve the original RUC wind
predictions are examined. The first approach is to
enhance RUC in terms of increased model resolution,
improved model physics, and increased observational



- 2 -

input data. The second method is to augment the RUC
output, in near real time, through an optimal
interpolation scheme that incorporates aircraft reports
received since the last RUC update. Both approaches
are shown to greatly reduce the occurrence of large
wind errors. For example, the improvement in the RUC
model reduced the percentage of point errors greater
than 10 m/s from 8% to 3%, and the augmentation of
RUC with near real-time aircraft reports reduced such
errors from 11% to 4% (using a slightly different set of
RUC forecasts.)

2. INTRODUCTION
The performance of Air Traffic Management Decision
Support Tools depends in large part on the accuracy of
the supporting 4D trajectory predictions. Accurate
trajectory predictions are particularly critical for
conflict prediction and for systems providing active
adivisories. Flight test results have indicated that wind
prediction errors may represent the largest source of
trajectory prediction error (Williams and Green, 1998;
Jardin and Green, 1998). The tests also discovered
relatively large errors (e.g., greater than 20 knots or
10 m/s), existing in pockets of space and time critical to
ATM DST performance (one or more sectors, greater
than 20 minutes). Classic RMS aggregate prediction
accuracy statistics, most often used in past studies,
inadequately represent these operationally significant
errors.

To facilitate the identification and reduction of wind
prediction errors that might lead to poor DST
performance, NASA is leading a collaborative research
and development activity with MIT Lincoln Laboratory
(MIT/LL) and the National Oceanographic and
Atmospheric Administration (NOAA) Forecast Systems
Lab (FSL). This activity began in 1996 and is focused
on the development of key wind error metrics for ATM
DST performance, assessment of wind prediction
accuracy for state-of-the-art systems, and
development/validation of system enhancements to
improve accuracy. A year-long study was conducted for
the Denver Center airspace in 1996-1997.

Two complementary wind prediction systems are
analyzed and compared to the forecast performance of
the (then standard) 60-km Rapid Update Cycle - version
1 (RUC-1). The RUC is a mesoscale numerical weather
prediction model (Schwartz and Benjamin, 1998)
developed by NOAA. The first system analyzed is the
prototype 40-km RUC-2. The RUC-2 became
operational at the National Center for Environmental
Prediction (NCEP) in 1999. The RUC-1 runs every
three hours, producing a set of hourly forecasts, and the
RUC-2 runs hourly producing a set of hourly forecasts.
In addition to a finer resolution grid than used by

RUC-1, RUC-2 uses more sophisticated physics and
additional observations.

The high-frequency atmospheric observations which
allow the rapid RUC update rate include those from
commercial aircraft equipped with Aircraft
Communication Addressing and Reporting System
(ACARS), wind profiles from various vertically
pointing radars, surface observations, and estimates of
moisture and winds from satellites. The RUC horizontal
domain covers the Continental United States and
adjacent parts of Canada, Mexico, and oceanic areas.
The initial operational version of the RUC was
implemented at NCEP in September 1994 with a 60 km
horizontal resolution. A major upgrade was
implemented in April 1999 as the 40-km RUC-2.

The second system studied, Augmented Winds (AW),
is a prototype en route wind application developed by
MIT Lincoln Laboratory based on the Terminal Winds
analysis (Cole, et al., 2000) developed for the FAA’s
Integrated Terminal Wind System (ITWS) (Evans and
Ducot, 1994). AW is designed to run at a local facility
(Center) level. The Terminal Winds is a data
assimilation system that uses RUC wind forecasts and
recent local measurements of the wind to produce
estimates of the current wind field. These local
measurements can come from surface observing
systems, FAA and NWS Doppler weather radars, and
ACARS.

The ITWS Terminal Winds system produces two wind
fields: one with a horizontal resolution of 10 km which
updates every 30 minutes, and one with a horizontal
resolution of 2 km which updates every five minutes.
The 2-km resolution grid is nested within the 10-km
resolution grid. The algorithm starts with an initial
estimate and modifies it to agree with the observations
in a general least squares sense via the Gauss-Markov
Theorem (Luenbuger, 1969). This scheme is closely
related to traditional Optimal Interpolation and
variational techniques (Daley, 1991). The Augmented
Winds analysis consists of only the 10 km analysis fed
RUC-1 on the hour, and near real-time aircraft
(ACARS) wind reports. Due to the 3-hour run cycle of
RUC-1 and the model run time, the 3-5 hour RUC-1
forecasts are used.

3. FLIGHT TEST RESULTS USING RUC-1
As part of an overall NASA effort to research and
develop integrated user Flight Management System
(FMS) and ATM Decsion Support Tools such as the
Center TRACON Advisory System (CTAS), (Denery
and Erzberger, 1995), a series of flight tests were
conducted at the Denver Center in 1992 (phase I) and
1994 (phase II). These tests were conducted to validate
airborne and ground-based (ATM/CTAS) trajectory
prediction accuracy, identify and measure major
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sources of trajectory prediction error, and explore
procedures for the integration of FMS and CTAS
decision support tools for arrival traffic (Williams and
Green, 1998; Green, et al., 2000). A key finding of
those tests was that wind prediction error was the
greatest source of error for trajectory predictions on the
order of 20 minutes time horizon (critical to ATM DST
advisories for conflict prediction/resolution and
conformance to flow rate/metering constraints).

Phase I involved 24 test runs conducted over five flight
routes over five days. The phase II test involved 26 test
runs conducted over five flight routes over seven days.
Each test run involved a 100-200 nmi. arrival path,
including a cruise segment (FL350 or 330) followed by
a descent segment (to 17,000 or 18,000 ft.) to the
Denver terminal area. The phase I test involved arrival
runs from the northeast standard arrival route (arrival
course of 237 degrees true), while the phase II test
involved arrival runs along the northwest standard
arrival route (initial course of 090 degrees true followed
by a turn to 145 degrees true approximately 30 nmi.
prior to the end of the test run at the terminal area
boundary). Typical test flights included 5 runs during
approximately a 3-hour time period.

Forecasts of winds were received every three hours
from the Mesoscale Analysis and Prediction System
(MAPS, the RUC-1 prototype system) operated out of
NOAA Forecast System Laboratory. CTAS converted
the MAPS data into local Denver-Center system
coordinates and interpolated the data to determine the
predicted winds aloft along a flight path predicted by
CTAS. These interpolated winds along the flight path
were recorded for each test run. The actual winds were
measured and recorded once per second, with
smoothing, on board NASA’s Transport Systems
Research Vehicle (TSRV) a Boing 737. GPS was used
for inertial velocity, and the flight test air data system
was used for air-mass velocity.

The measured winds of sample phase I and phase II
flights are presented in figures 1 and 2, respectively.
The winds along path are presented in terms of
component speeds (knots) in the true north and east
directions. For consistency between runs, the data are
presented as a function of pressure altitude, with
samples at discrete levels. Data from the multiple runs
of each flight are combined into a mean and standard
deviation of wind speed at that altitude. Data for the
cruise altitude include all samples taken at cruise during
the run, whereas data for lower altitudes include a
single sample for each run as the flight passed through
that altitude. Figures 1 and 2 illustrate a relatively large
variation in the winds aloft between flights, with some
variation within a flight (across multiple runs).
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Figure 1. Measured winds from the phase I test.
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Figure 2. Measured winds from the phase II test.

A sample of the measured/analyzed wind prediction
errors are presented in figures 3 and 4 for phase I/II,
respectively, using a similar format. Figure 5 presents a
composite of the wind errors (mean and standard
deviation) over all runs for each phase. Figures 3 and 4
indicate a fair amount of variation in mean wind error
from one flight to another, with small variation across

the test runs within a flight as well as variation with
altitude. In many cases, the errors exceed 10 m/s
(approximately 20 knots, and large enough to cause a
significant error in trajectory prediction), particularly in
cruise where the trajectory error will accumulate over
the time horizon of a typical trajectory prediction.
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Figure 3. CTAS wind model errors from the phase I
test.
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(c) Flight 732
Figure 4. CTAS wind model errors from the phase II
test.

In particular, the test runs within flight 732 (phase II)
consistently experienced cruise wind errors greater than
30 m/s. This was attributed to a frontal passage in the
general area that was incorrectly forecasted.

These flight test results reveal the existence of large
wind prediction errors that may be detrimental to the
performance of an ATM DST. Although these errors
typically occur in scales of space and time that are
critical to the performance of an ATM DST, they occur
over scales that are much smaller than the spatial and
temporal domains typically used to compute aggregate
RMS error statistiscs and thus have little effect on
typically reported accuracy statistics.
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Figure 5. Composite CTAS wind model errors.

4. METRICS FOR LARGE ERRORS
For ATM applications, typically involving time
horizons of 20-40 minutes, trajectory prediction errors
in excess of 20-30 seconds may be disruptive and
decrease the efficiency of ATM service (Green and
Vivona, 1996; Paielli and Erzberger, 1996). In defining
a metric for peak errors, it is useful to consider that the
FAA standard for en route radar separation is 5 nmi.
under Instrument Flight Rules (IFR). A 15 kt (~7.7 m/s)
mean error in along-track head wind component, over a
20-minute trajectory prediction, will result in a 5 nmi.
error in predicted position. For conflict prediction,
trajectories are along different directions, and two
trajectories will have different prediction errors which
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may sum to a larger error in aircraft separation than the
individaul errors in aircraft location. In the worst case
of aircraft converging from opposite directions, the
errors in location will be of opposite sign, and the error
in predicted aircraft separation will be twice the error in
the individual aircraft locations. In the case of conflict
prediction, much smaller mean along-track errors may
lead to poor ATM DST performance than for the
simpler task of aircraft sequencing.

While headwind error is the most appropriate wind
error to study if examining time-to-fly errors for a given
aircraft, it is easier to examine the magnitude of the
vector error, as this is independent of any knowledge of
specific trajectories. Given a wind vector error, an
aircraft flying perpendicular to the error vector will
experience no headwind error. An aircraft flying
parallel to the error vector will experience a headwind
error equal to the magnitude of the error vector.
Averaged over all directions, the mean headwind error
will be the magnitude of the error vector times 2/π.
Thus, a 15 kt headwind error is roughly equivalent to a
20 kt (~10m/s) vector error.

An ATM DST that provides active advisories (i.e.,
specific clearance suggestions for conflict resolution
and flow-rate conformance), must provide high quality
advisories at nearly all times. Even the occasional
occurrence of incorrect advisories may not be
operationally acceptable to controllers using the DST.

Standard measures of wind prediction accuracy are
averaged over large periods of time and airspace.
Alone, such aggregate metrics are not enough to
determine the suitability of a wind field prediction for
use by an active ATM DST. Most wind prediction
systems provide adequate on-average performance
since most of the time, over most of the airspace, the
wind is only slowly varying and thus is easy to predict.
However, as shown in the flight tests, unacceptably
large wind errors (i.e., errors greater than 10 m/s) may
exist over smaller periods of time and regions of
airspace than typically have been studied in the
meteorological literature. These large errors, potentially
unacceptable for active ATM DST operations, are
simply drowned out in the classical aggregate statistics
typically used to assess the skill of wind prediction
systems.

Wind prediction errors are known at locations where
aircraft measured winds are available for comparison
with the predicted winds. Since the aircraft
measurements are averaged over scales of a kilometer
or less, these spot checks represent point errors. The
error in the wind field as measured by comparison to
aircraft winds may be due to a small-scale wind feature
that is missing from the modeled wind or may be due to
a more systematic error in the modeled wind. If the

wind error is due to a small-scale wind feature, it will
not have a large effect on the predicted aircraft
trajectory. Ideally, the errors all along a flight path
would be studied, but the density of aircraft-measured
winds does not make this possible in general.

Three types of metrics are introduced in this study to
capture and quantify large errors. The simplest metric,
large point error percentage, simply quantifies the
percentage of wind vector errors larger than some
value; for example, 10 m/s. A second type of metric is
to compute percentile values of the magnitude of wind
vector errors. These percentile values give a probability
distribution. The probability distribution has the
advantage that no threshold is set in advance; each user
of the data can choose their own threshold. While
isolated large point errors have little effect on time-to-
fly estimates, the reduction in large point errors is a
useful measure of improvement of wind prediction skill
for ATM DST use.

A third type of metric, large hourly error percentage, is
more directly related to ATM DST performance. This
metric is based on the frequency of occurrence of large
errors in temporal and spatial domains of interest to
ATM automation rather than the frequency of large
point errors. While a large point error by itself will not
cause a problem, a collection of such errors along a
flight path will. The data are not dense enough in
general to look at errors along individual flight paths.
Instead, the 25th percentile, 50th percentile, and 75th
percentile errors for the wind fields on an hourly basis
are used. If the 25th percentile hourly error is greater
than 10 m/s, then 75% of all the errors measured in that
hour are greater than 10 m/s. Given that most of the
errors in an hour are greater than 10 m/s, it is likely that
the wind field for that hour would lead to poor ATM
DST performance. If the 75th percentile error is large,
only 25% of the reported errors in that hour are large,
but if these errors tend to be located in one region of the
airspace, they may cause poor ATM DST performance.

5. METHODOLOGY
To determine wind field accuracy, the wind fields are
compared to a data set of independent aircraft wind
measurements (ACARS). More than one million
aircraft reports collected during a one-year period (12
months for MIT/LL and 13 months for FSL) starting
1 August 1996 are used. These aircraft reports are
collected in a region approximately 1300 km on a side,
centered on the Denver International Airport. Each
aircraft report is independent of the RUC forecasts valid
at the time the report was taken since it is taken after
the data collection period for the RUC run. Similarly,
the aircraft reports are independent of any Augmented
Wind field generated before the reports are taken.
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The FSL results are obtained by differencing the
aircraft reports with the RUC-1 and RUC-2 forecast
fields nearest in time. The Lincoln results are obtained
by comparing each aircraft report to the most recent
prior Augmented Wind field and comparing the aircraft
report to the RUC-1 forecast used in that Augmented
Wind field. The wind field value at an aircraft location
is computed from the gridded values using linear
interpolation in three dimensions. The differences
between the aircraft report and wind field values are
estimates of the point errors in the wind fields and are
used to compute the desired statistics.

The spatial distribution of the aircraft data is shown in
figure 6. These data are from May 1st, 1997, the day
United Airlines began rapid ascent and descent
reporting in support of this study. The increased
reporting continued through the remainder of the study
period. Data prior to this have a similar distribution but
are less dense, with about 3000 reports per day instead
of about 8000. Most of the reports are at cruising
altitudes, with two-thirds of the reports associated with
the grid levels at 200 mb and 250 mb. Approximately
11% of the reports are associated with levels at 300 mb
and 350 mb. The remaining reports are roughly
uniformly distributed among levels from 400 mb to
800 mb, and as seen in the figure, are from aircraft in a
funnel-like region centered on the Denver airport.

Figure 6. Distribution of ACARS reports on 1 May
1997. This day has 8125 ACARS reports. This is after
United Airlines increased their reporting rate.

For these studies it is important to model the errors
expected to be encountered by an ATM DST in
computing time-of-flight as opposed to modeling
random errors throughout the entire airspace. This is
done by simply assuming that the distribution of aircraft
reports in these studies is the likely distribution of
aircraft an ATM DST will encounter. Therefore, the
reported accuracy statistics are not quite measures of
the overall accuracy of RUC or Augmented Winds. For
example, these studies show that wind errors are greater
at higher altitudes. Since there are more aircraft reports
at higher altitudes, this tends to elevate the estimates of

the RMS error in the wind fields relative to a uniformly
distributed sample of errors. Conversely, there are more
aircraft reports in regions where RUC and AW have
dense aircraft input data, perhaps reducing the error
estimates.

6. RESULTS
FSL found a RMS vector error of 5.26 m/s over all 0-6
hour RUC-1 forecasts, and a RMS vector error of
4.67 m/s for the same forecasts for RUC-2. These
values are corrected for the errors in the aircraft reports
and cover 13 months, 1 August 1996 through August
1997. Lincoln found a RMS vector error of 6.24 m/s for
RUC-1 3-5 hour forecasts and a RMS vector error of
4.51 m/s for the Augmented Wind fields generated
from these RUC-1 forecasts. These values are corrected
for aircraft errors, and cover 12 months. A 16-day set of
data were rerun using Augmented Winds fed RUC-2
instead of RUC-1. The improvement due to
augmentation is essentially the same using either
RUC-1 or RUC-2, so the improvement presented for
the year-long Augmented Winds data set should
represent the improvement over RUC-2 as well as over
RUC-1. While there is a reduction in RMS error due to
the improvement in the RUC model and due to the
augmentation with near real-time aircraft reports, all of
the RMS error values are well below 10 m/s. However,
significant errors exist within individual forecasts.

Figure 7 shows the percentage of point errors for
RUC-1 and RUC-2 that are greater than 10 m/s on a
month-by-month basis over 13 months, starting in
August 1996. The RUC-1 forecast fields are for
predictions out 3-5 hours, as the forecasts are not
available prior to hour three after the start of the model
run. The RUC-2 forecast fields for hours 1 and 2 are
used, as these are available before an hour after the start
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of the model run. The percentage of large errors
increases in the winter, corresponding to the increase in
wind speed. The increase in error with with speed is
due to a low bias in wind speed when the wind speeds
are high. Potentially, an ATM system could correct for
this bias to improve its performance. Due to the
combination of shorter forecast times and improved
RUC, the RUC-2 produces far fewer large point errors
than RUC-1; 8% of the RUC-1 errors are greater than
10 m/s, while only. 3% of the RUC-2 errors are greater
than 10 m/s.

Figure 8 provides probability distributions for RUC-1
and Augmented Winds (labled TW, or Terminal Winds,
in the figure) over the entire data set. For example, the
90th percentile wind vector errors are 10.18 m/s and
7.85 m/s, respectively. The figure also indicates that
RUC-1 forecasts contain vector errors greater than
10 m/s about 11% of the time; the augmentation with
near real-time aircraft reports reduces the occurrence of
errors greater than 10 m/s to 4% of the time.

Figure 8. RUC-1 and TW (augmented RUC-1)
cumulative probability vs. vector error.

Table 1 presents results for the same data set but using
the third metric, large hourly error. For comparison, the
results are presented in terms of the 25th, 50th and 75th
percentile hourly-vector errors. Considering the 25th
percentile division, it is seen that there are 42 hours
during the year when 75 percent of the RUC-1 vector
errors exceed 7 m/s. These 42 hours are evenly divided
between nighttime and daytime and usually occur as
isolated hours. The results indicate that augmenting
RUC with near real-time aircraft reports reduces this
number to five hours. There are no hours when 75
percent of the RUC-1 vector errors are greater than
10 m/s. Considering the 50th percentile division, the
augmentation reduces the number of hourly vector
errors greater than 7 m/s from 829 (RUC-1) to 124.
Even more significant is the reduction of the number of
hourly vector errors greater than 10 m/s from 46 hours
to one. These 46 hours were also evenly divided
between nighttime and daytime and usually occur as
isolated hours. Having large errors even over 25 percent

of a forecast region is potentially of operational concern
if these errors are sustained along a flight path rather
than randomly distributed. The augmentation resulted
in similar improvements over RUC-1 for the 75th
percentile division; most notable is the reduction in the
number of hourly vector errors greater than 15 m/s from
45 to 8. Again, these 45 hours are evenly divided
between nighttime and daytime and usually occur as
isolated hours.

Table 1. Number of hours with hourly Nth percentile
vector errors above given thresholds.

Results are for 7023 hours.

Variable >7m/s >10m/s >15ms

RUC-1 25th percentile 42 0 0

AW 25th percentile 5 0 0

RUC-1 50th percentile 829 46 0

AW 50th percentile 124 1 0

RUC-1 75th percentile 4160 834 45

AW 75th percentile 1913 203 8

7. CONCLUSIONS
Large wind errors (i.e., vector errors greater than
10 m/s) may be detrimental to ATM DST performance,
especially if they persist along flight paths. Flight tests
demonstrated the existence of such large errors that are
not captured by the classic RMS aggregate statistics
typically used to assess the skill of wind prediction
systems.

Three types of metrics for measuring large errors were
introduced. The first looks at the percentage of point
wind vector errors greater than a threshold. The second
type uses percentile values of the wind vector error, or
the related probability distribution for wind vector
errors. The last type is based on hourly periods with a
large fraction of errors greater than a threshold.

Two approaches to improving wind field accuracy,
improving the numerical model, and updating forecasts
with near real-time aircraft reports were examined in a
year-long study of wind prediction accuracy over the
Denver Center airspace. Both approaches not only
improved the overall aggregate RMS performance, they
also greatly reduced the occurrence of large errors as
measured by each of the three metrics. An additional
analysis of a representative subset of sixteen days
demonstrated the potential performance enhancements
of combining both approaches simultaneously. The
parameters that govern the Augmented Winds
algorithm were updated based on what was learned in
this study. With the updated parameters, the
improvement in RMS vector error of the augmented
winds is essentially the same for both RUC-1 and
RUC-2, indicating that the above results for AW are
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relevant for augmentation of the current operational
RUC model. In other words, although RUC-2 provides
a significant performance improvement over RUC-1
itself, the augmentation of RUC-2 with near real-time
aircraft reports adds additional performance on par with
the augmentation enhancement of RUC-1.
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